Analysis of operator differential - algebraic equations arising in fluid dynamics . Part II . The infinite dimensional case ∗ Etienne Emmrich Volker
نویسندگان
چکیده
Existence and uniqueness of generalized solutions to initial value problems for a class of abstract differential-algebraic equations (DAEs) is shown. The class of equations covers, in particular, the Stokes and Oseen problem describing the motion of an incompressible or nearly incompressible Newtonian fluid but also their spatial semi-discretization. The equations are governed by a block operator matrix with entries that fulfill suitable inf-sup conditions. The problem data are required to satisfy appropriate consistency conditions. The results in infinite dimensions are compared in detail with those known for the DAEs that arise after semi-discretization in space. Explicit solution formulas are derived in both cases.
منابع مشابه
New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملApplication of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations
In this study, an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials. Properties of these polynomials and operational matrix of integration are first presented. These properties are then used to transform the integral equation to a matrix equation which corresponds t...
متن کاملA NEW APPROACH TO SOLVE DIFFERENTIAL EQUATIONS ARISING IN FLUID MECHANICS
The purpose of this study is to demonstrate the potential of Imperialist CompetitiveAlgorithm (ICA) for solving Blasius dierential equation. This algorithm is inspiredby competition mechanism among Imperialists and colonies and has demonstrated excellentcapabilities such as simplicity, accuracy, faster convergence and better global optimumachievement in contrast to other evolutionary algorithms...
متن کاملComparison of the hyperbolic range of two-fluid models on two-phase gas -liquid flows
In this paper, a numerical study is conducted in order to compare hyperbolic range of equations of isotherm two-fluid model governing on two-phase flow inside of pipe using conservative Shock capturing method. Differential equations of the two-fluid model are presented in two forms (i.e. form I and form II). In forms I and II, pressure correction terms are hydrodynamic and hydrostatic, respecti...
متن کامل